On the Power of Simple Branch Prediction Attacks

Onur Acıiçmez

Çetin Koç

Jean-Pierre Seifert

Presented by Shay Gueron

Branch Prediction Attacks

- Recent software side channel attack (2006)
- Exploit a performance optimization feature in CPUs
- BPA uses
 - Information leak via penalty for a mispredicted branch
- BPA does
 - Unprivileged process (<u>spy</u>) can attack processes
 (<u>crypto</u>) running in parallel on same processor.
 - Works despite of sophisticated partitioning/protection methods such as memory protection, sandboxing, virtualization, etc.

Simple Branch Prediction Attacks

- BPA
 - Uses <u>many</u> execution-time measurements to statistically amplify some small but keydependent timing differences

In contrast- Simple BPA (SBPA)

- A carefully written spy-process running simultaneously with an RSA-process, is able to collect almost all of the secret key bits during single RSA signing execution
- SBPA attacks on RSA/ECC *cannot* be mitigated by randomization or blinding techniques!

Implications of SBPA

- The bad news
- In the presence of SBPA attacks
 - The very recent countermeasures to protect the open SSL 0.9.8 RSA implementation against cache based sidechannel attacks are useless.
 - Blinding and randomization techniques to protect RSA against side-channel attacks are also useless.
 - Other implications as well
- The good news
 - The paper(s) with the new results, by Aciçmez, Koç, and Seifert, will be published soon, and will be subsequently followed by a paper of Onur Aciçmez, Shay Gueron, Cetin Koç, and Jean-Pierre Seifert on proper mitigations for openSSL.